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Highlights  Abstract  

▪ To predict RUL by considering dynamic 

thresholds. 

▪ A multi-stage maintenance-impact degradation 

model is established. 

▪ The parameters are estimated using the MLE 

and Bayesian formula. 

▪ The proposed approach can enhance the 

precision of RUL prediction. 

 A novel approach for predicting remaining useful life (RUL) is proposed 

for situations where maintenance threshold and failure threshold exhibit 

dynamic behavior due to uncertainties in degradation and the influence 

of detection strategies during maintenance processes. The approach 

introduces maintenance threshold error to establish a multi-stage 

maintenance-impact degradation model with dynamic maintenance 

threshold based on the Wiener process. This model considers the impact 

of maintenance on degradation rate, amount, and path. Moreover, by 

using the first hitting time (FHT) and introducing failure threshold error 

to reflect the dynamic behavior of the failure threshold, the formula for 

predicting equipment RUL is derived. The model parameters are 

estimated using both the maximum likelihood estimation (MLE) 

approach and Bayesian formula. The proposed approach was validated 

with simulation data and gyroscope degradation data, and the results 

demonstrate its ability to effectively enhance the precision of equipment 

RUL prediction. 
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1. Introduction 

Prognostics and health management (PHM) is an indispensable 

technology that is often employed to ensure secure operational 

functionality and augment the monetary effectiveness of 

equipment [8,23]. Lately, the precise forecast of RUL has 

become a pivotal element for the successful utilization of PHM 

technology. Thus, research revolving around RUL forecasting 

has garnered substantial attention from scholars locally and 

internationally, materializing as a major area of interest in the 

reliability domain and producing abundant outcomes [2,6,17].  

Currently, among the various research approaches, the 

random process-based approach based on equipment 

degradation is more promising and valuable due to the high 

longevity, stability, and well-developed monitoring techniques 

of modern equipment [12,21]. The primary goal of this 

approach is to establish a degradation model that describes the 

equipment degradation process [28]. The commonly used 

degradation models include the Wiener process [10,13,31], 

Gamma process, and others[11,16,22]. The Wiener process, in 

particular, has been widely applied in research due to its 

flexibility in describing the degradation process, analytical 
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expression for the FHT [32,34], compatibility with other 

influencing factors, and so on. However, most of the extant RUL 

prediction research about the Wiener process focuses on 

discussions regarding the time scale[19], random parameter 

setting [3,30,33], failure threshold assumption [7], and 

modeling the influence of vibration shock [5] on the degradation 

process. The influence of maintenance on the equipment 

degradation process is often neglected. In engineering practice, 

the degradation condition of the equipment is improved to some 

extent due to running maintenance protection. For this situation, 

some scholars have conducted research on RUL prediction of 

equipment under the influence of maintenance. 

Wang and other scholars [27] stems from Wiener process, 

viewed the effect of maintenance on equipment degradation 

process as an effect on the degradation amount and used normal 

distribution to represent the variation of the degradation amount 

after maintenance. Reference [26] did not only rely on the 

normal distribution to depict the change in degradation resulting 

from maintenance but also delved into exploring the use of an 

exponential distribution to depict the amount of degradation 

wreaked by maintenance. Pei H, Si X, Hu C [20] argued that 

contemplating the effect of maintenance on the degradation rate 

is equally significant as considering its effect on the degradation 

amount. They developed a degradation model with a multi-stage 

diffusion process to predict the RUL. Although this approach 

can effectively enhance the precision of RUL prediction, it 

postulates that the degradation amount detected before each 

maintenance event is equal to the preset maintenance threshold, 

meaning that the change in performance degradation amount 

strictly begins from the preset maintenance threshold after each 

maintenance event. In actuality, due to the vagueness revolving 

around equipment degradation, detection mechanisms, the 

degradation amount detected before maintenance may surpass 

the maintenance threshold. Therefore, using the preset 

maintenance threshold as the starting point for equipment 

performance degradation amount may lead to inaccuracies in 

degradation modeling. Similarly, due to uncertainties in 

degradation and the influence of detection strategies, the actual 

failure threshold may exceed its preset value. At this point, the 

RUL prediction formula calculated based on the FHT and the 

preset failure threshold may be inaccurate. 

Therefore, in an effort to upgrade the precision of equipment 

RUL prediction, this article addresses the degradation of 

equipment with maintenance impacts during its lifecycle. Based 

on the multi-stage degradation modeling theory [14,18,29],  

a maintenance-impact degradation model according to the 

Wiener process is established, which takes into account 

dynamic maintenance threshold. Further research is conducted 

on the updating of the degradation path after maintenance, and 

a formula for estimating RUL that considers dynamic failure 

threshold using the notion of FHT is put forward, based on the 

aforementioned degradation model. The availability of the 

proposed approach is verified through simulation and examples, 

providing a new approach and thinking to upgrade the precision 

of RUL prediction. The organization of this article is outlined as 

follows. The maintenance-impact degradation model is 

introduced in Section 2. Section 3 introduces the derivation 

process of RUL prediction formula. The estimation of 

parameters is introduced in Section 4. Section 5 describes the 

case analysis process, where the proposed approach is validated 

by simulation data and gyroscope degradation data. Section 6 is 

the conclusion of the article. 

2. Maintenance-impact degradation model  

2.1. Problem description and assumptions 

To enhance the efficacy of equipment usage, maintenance 

activities are always present throughout the life cycle of the 

equipment. Upon each maintenance, the equipment's 

performance is enhanced while the extent of performance is 

reduced in contrast to its prior state. The degradation track of 

the equipment exhibits multi-stage features, as evidenced in 

Figure 1. 

 

Fig. 1. Equipment degradation track under the influence of 

maintenance. 
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In Figure 1, 0~𝜏1 represents the natural degradation stage, 

which has no maintenance impact. When the degradation 

amount 𝑋(𝑡)  arrives the preset maintenance threshold 𝑤𝑝 , 

maintenance and guarantee activities are initiated for the 

equipment. After the first maintenance, the equipment's 

performance is improved, and the reduced degradation amount 

is defined as the amount of change impacted by maintenance, 

𝛾1as indicated. However, due to uncertainty in degradation and 

the influence of detection strategies, the amount of degradation 

prior to the maintenance may surpass the maintenance threshold, 

causing errors in the jumping-off point of the next stage of 

degradation. Thus, the jumping-off point of the next stage of 

degradation should be demarcated as 𝑤𝑝 + 𝜉1 − 𝛾1 , 𝜉1  is the 

maintenance threshold error after the 1 th maintenance. 𝜏1~𝜏2 

indicates the equipment degradation stage after the 1th 

maintenance, and the starting point of the degradation amount 

in this stage is 𝑤𝑝 + 𝜉1 − 𝛾1; 𝜏𝑖~𝜏𝑖+1 indicates the equipment 

degradation stage after the i  th maintenance, and the starting 

point of the degradation amount in this stage is 𝑤𝑝 + 𝜉𝑖 − 𝛾𝑖, 

which 𝛾𝑖 is the degradation amount of the maintenance impact 

after the 𝑖  th maintenance. 𝑖  is the number of times of 

maintenance and 𝑖 ∈ 𝑍+. 𝜉𝑖 is the maintenance threshold error 

after the 𝑖  th maintenance. Without loss of generality, it is 

supposed that when the equipment runs to the time 𝜏𝑖+1 , the 

equipment has failed due to the performance degradation which 

has surpassed the error threshold of failure 𝑊𝑓  or 𝑊𝑓 + 𝜉𝑖+1 , 

where 𝜉𝑖+1 is the failure threshold error. 

Based on the above statements, the assumptions are made 

regarding critical issues such as modeling and the derivation of 

RUL formulas are as follows: 

Assumption 1: The improvement in equipment 

performance after undergoing maintenance is reflected by the 

change in the amount of post- maintenance equipment 

degradation. 

Assumption 2: When the degradation performance of the 

equipment reaches or surpasses the predetermined maintenance 

threshold, maintenance and support activities are promptly 

carried out to restore the degradation to a certain degree. 

Assumption 3: The proportion of maintenance time to the 

entire life cycle of the equipment is relatively small and can be 

ignored. 

Assumption 4: The degradation process described in this 

article by applying the Wiener process. 

Assumption 5: Based on the above assumptions, after each 

𝑖 th maintenance, the equipment continues to degrade from the 

start point of the previous degradation 𝑤𝑝 + 𝜉𝑖 − 𝛾𝑖, when the 

detected degradation amount 𝑋(𝑡)  is exactly equal to the 

predetermined maintenance threshold 𝑤𝑝 , the 𝜉𝑖  will be zero. 

Likewise, when the detected degradation amount 𝑋(𝑡) reaches 

the predetermined failure threshold 𝑊𝑓, 𝜉𝑖+1 is set to 0. 

Assumption 6: Taking real-world situations into account, it 

is assumed that the errors in maintenance and failure thresholds 

follow normal distribution. 

2.2. Maintenance-impact degradation model based on 

wiener process 

Given the aforementioned assumption, the maintenance-impact 

degradation model of the equipment using the Wiener process 

[4,15,35] after 𝑖 th maintenance can be established by: 

𝑋𝑖(𝑡) = {

𝜇0(𝑡 − 𝜏0) + 𝜎0𝐵(𝑡 − 𝜏0)[(0 ≤ 𝑡 ≤ 𝜏𝑖+1)(𝑖 = 0)]
𝑤𝑝 + 𝜉𝑖 − 𝛾𝑖 + 𝜇𝑖(𝑡 − 𝜏𝑖) +

𝜎𝑖𝐵(𝑡 − 𝜏𝑖)[(𝜏𝑖 ≤ 𝑡 ≤ 𝜏𝑖+1)(𝑖 = 1,2, . . . 𝑛; 𝑛 ∈ 𝑍+)]

      (1) 

Where 𝑋𝑖(𝑡)  represents the degradation amount of 

equipment performance at time 𝑡 ; 𝑤𝑝  represents a given 

maintenance threshold; 𝜉𝑖  represents the error of maintenance 

threshold, which is used to reflect the dynamic nature of the 

maintenance threshold and 𝜉𝑖~𝑁(𝜇𝜉𝑖
, 𝜎𝜉𝑖

2 ) . 𝜸𝒊  represents the 

improvement amount of equipment degradation due to 

maintenance activities, and will be determined by the 

degradation amount detected before and after 

maintenance; 𝜇𝑖(𝑖 ≥ 0)  represents the drift parameter, which 

represents the degradation rate of the equipment after each 𝑖 th 

maintenance； 𝜎𝑖(𝑖 ≥ 0)  represents the diffusion parameter, 

which represents the uncertainty of the degradation path;  

𝐵(⋅)represents the standard Brownian motion. 

3. RUL prediction 

Due to the influence of maintenance activities, the complete 

degradation process of the equipment is separated into several 

degradation stages. Depending on the maintenance frequencies 

(MFs), the degradation process is doubly divided into three 

parts: the natural degradation stage, the degradation stage from 

the first maintenance until the final maintenance, and the 

degradation stage from the final maintenance until failure. As  

a result, the following RUL prediction analysis and formula 
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derivation will revolve around these three parts. 

Assuming that the equipment has undergone 𝑖 th (1 < 𝑖 ≤

2 ≤ 3 ≤⋅⋅⋅≤ 𝑛, 𝑛 ∈ 𝑍+)  maintenances, the degradation in 

performance detected during any operational time(OT) 𝑡𝑖,𝑗  is 

noted by 𝑋(𝑡𝑖,𝑗), where 𝑗(𝑗 ≥ 1, 𝑗 ∈ 𝑍+) represents the number 

of tests. When the performance degradation detected after a 

period of time 𝑟𝑖,𝑗 reaches or reaches the predetermined failure 

threshold, the equipment is supposed to have failed. At this 

point, the 𝑟𝑖,𝑗  is the RUL and the residual degradation time 

(RDT) of the equipment after the last maintenance, based on the 

FHT [32], which is defined as: 

𝑅𝑖,𝑗 = 𝑖𝑛𝑓{𝑟𝑖,𝑗: 𝑋(𝑡𝑖,𝑗 + 𝑟𝑖,𝑗) ≥ 𝑊𝑓 , 𝑋(𝑡𝑖,𝑗) < 𝑊𝑓} 

= 𝑖𝑛𝑓 {
𝑟𝑖,𝑗: 𝑋(𝑡𝑖,𝑗 + 𝑟𝑖,𝑗) − 𝑋(𝑡𝑖,𝑗) ≥ 𝑊𝑓 − 𝑋(𝑡𝑖,𝑗),

𝑋(𝑡𝑖,𝑗) < 𝑊𝑓
}     (2) 

Based on Eq. (1) and (2), it can be derived that the PDF of 

𝑟𝑖,𝑗 is [9,36]: 

𝑓𝑅𝑖,𝑗
(𝑟𝑖,𝑗|𝑋(𝑡𝑖,𝑗)) =

𝑊𝑓−𝑋(𝑡𝑖,𝑗)

√2𝜋𝜎𝑖
2𝑟𝑖,𝑗

3
𝑒𝑥𝑝 [−

(𝑊𝑓−𝑋(𝑡𝑖,𝑗)−𝜇𝑖𝑟𝑖,𝑗)
2

2𝜎𝑖
2𝑟𝑖,𝑗

]  (3) 

The specific predicted value of 𝑟𝑖,𝑗 is: 

𝑟𝑖,𝑗 = 𝐸(𝑟𝑖,𝑗) = ∫ 𝑟𝑖,𝑗𝑓𝑅𝑖,𝑗
(𝑟𝑖,𝑗)𝑑(𝑟𝑖,𝑗)

+∞

−∞
  (4) 

It is noticed that Eq. (3) is applicable for RUL prediction 

with a fixed failure threshold. However, this approach does not 

take into account the error in failure threshold. Therefore, when 

considering the error in failure threshold, the Eq. (3) should be 

modified as: 

𝑓𝑅𝑖,𝑗

′ (𝑟𝑖,𝑗|𝑋(𝑡𝑖,𝑗)) =
𝑊𝑓+𝜉𝑖+1−𝑋(𝑡𝑖,𝑗)

√2𝜋𝜎𝑖
2𝑟𝑖,𝑗

3
⋅ 𝑒𝑥𝑝 [−

(𝑊𝑓+𝜉𝑖+1−𝑋(𝑡𝑖,𝑗)−𝜇𝑖𝑟𝑖,𝑗)
2

2𝜎𝑖
2𝑟𝑖,𝑗

](5) 

Due to the dynamic and stochastic nature of the failure 

threshold to be represented, Eq. (5) cannot yet be used as the 

target PDF and doubly derivation is necessary. To this end, 

Lemma 1 [24] is provided. 

Lemma 1: if 𝑍~𝑇𝑁(𝜇, 𝜎2), 𝐴 ∈ 𝑅, 𝐵 ∈ 𝑅+, then: 

𝐸 [𝑍 ⋅ 𝑒𝑥𝑝 (
−(𝑍 − 𝐴)2

2𝐵
)] =

√𝐵

𝛷(𝜇/𝜎)(𝐵 + 𝜎2)
⋅ 

[
 
 
 
 
 
√

𝐵𝜎2

2𝜋
𝑒𝑥𝑝 (−

𝐴2𝜎2 + 𝜇2𝐵

2𝐵𝜎2
) +

𝐴𝜎2 + 𝐵𝜇

√𝐵 + 𝜎2
⋅

𝑒𝑥𝑝 (−
(𝜇 − 𝐴)2

2(𝐵 + 𝜎2)
)𝛷 (

𝐴𝜎2 + 𝐵𝜇

√(𝐵 + 𝜎2)𝐵𝜎2
)

]
 
 
 
 
 

 

According to the Lemma 1, deeming the 𝑊𝑓 + 𝜉𝑖+1 −

𝑋(𝑡𝑖,𝑗) is 𝑍, it can be deduced that the PDFs of the RUL and 

RDT to any OT during the period from the last maintenance of 

the equipment can be expressed as: 

𝑓𝑅𝑖,𝑗

′ (𝑟𝑖,𝑗|𝑋(𝑡𝑖,𝑗)) =
𝑊𝑓+𝜉𝑖+1−𝑋(𝑡𝑖,𝑗)

√2𝜋𝜎𝑖
2𝑟𝑖,𝑗

3
⋅ 𝑒𝑥𝑝 [−

(𝑊𝑓+𝜉𝑖+1−𝑋(𝑡𝑖,𝑗)−𝜇𝑖𝑟𝑖,𝑗)
2

2𝜎𝑖
2𝑟𝑖,𝑗

] =

1

√2𝜋𝐵𝑟𝑖,𝑗
2

⋅
√𝐵

Φ(
𝛼

𝜎𝜉𝑖+1

)(𝐵+𝜎𝜉𝑖+1

2 )

⋅

[
 
 
 
 
 
 
 
 √

𝐵𝜎𝜉𝑖+1

2

2𝜋
𝑒𝑥𝑝 (−

𝐴2𝜎𝜉𝑖+1

2 +𝛼2𝐵

2𝐵𝜎𝜉𝑖+1

2 ) +

𝐴𝜎𝜉𝑖+1

2 +𝐵𝛼

√𝐵+𝜎𝜉𝑖+1

2
𝑒𝑥𝑝 (−

(𝛼−𝐴)2

2(𝐵+𝜎𝜉𝑖+1

2 )
) ⋅

Φ(
𝐴𝜎𝜉𝑖+1

2 +𝐵𝛼

√(𝐵+𝜎𝜉𝑖+1

2 )𝐵𝜎𝜉𝑖+1

2
)

]
 
 
 
 
 
 
 
 

           (6) 

where 𝐵 = 𝜎𝑖
2𝑟𝑖,𝑗; 𝐴 = 𝜇𝑖𝑟𝑖,𝑗; 𝛼 = 𝑊𝑓 + 𝜇𝜉𝑖+1

− 𝑋(𝑡𝑖,𝑗). 

When 𝑗 = 0, 𝑋(𝑡𝑖,0) = 𝑤𝑝 + 𝜉𝑖 − 𝛾𝑖, the PDFs of the final 

RUL and the total RDT of the equipment after the last 

maintenance is:  

𝑓𝑅𝑖,0
(𝑟𝑖,0|𝑊𝑓 + Δ𝜉𝑖+1 − 𝑤𝑝 + 𝛾𝑖) =

𝑊𝑓+Δ𝜉𝑖+1−𝑤𝑝+𝛾𝑖

√2𝜋𝜎𝑖
2𝑟𝑖,0

3
              ⋅

  𝑒𝑥𝑝 [−
(𝑊𝑓+𝛥𝜉𝑖+1−𝑤𝑝+𝛾𝑖−𝜇𝑖𝑟𝑖,0)

2

2𝜎𝑖
2𝑟𝑖,0

]     (7) 

where 𝛥𝜉𝑖+1 = 𝜉𝑖+1 − 𝜉𝑖  and 𝛥𝜉𝑖+1~𝑁(𝜇𝛥𝜉𝑖+1
, 𝜎𝛥𝜉𝑖+1

2 ) , 

therefore, according to the Lemma 1, the target PDF for the 

RUL of the equipment after the last maintenance, which is the 

total RDT after the last maintenance, can be derived as: 

𝑓𝑅𝑖,0

′ (𝑟𝑖,0|𝑊𝑓 + Δ𝜉𝑖+1 − 𝑤𝑝 + 𝛾𝑖) =
1

√2𝜋𝐵𝑟𝑖,0
2

⋅
√𝐵

Φ(
𝛼

𝜎Δ𝜉𝑖+1

)(𝐵+𝜎Δ𝜉𝑖+1

2 )

⋅

[
 
 
 
 
 
 
 
 √

𝐵𝜎Δ𝜉𝑖+1

2

2𝜋
𝑒𝑥𝑝 (−

𝐴2𝜎Δ𝜉𝑖+1

2 +𝛼2𝐵

2𝐵𝜎Δ𝜉𝑖+1

2 ) +

𝐴𝜎Δ𝜉𝑖+1

2 +𝐵𝛼

√𝐵+𝜎Δ𝜉𝑖+1

2

𝑒𝑥𝑝 (−
(𝛼−𝐴)2

2(𝐵+𝜎Δ𝜉𝑖+1

2 )
)Φ(

𝐴𝜎Δ𝜉𝑖+1

2 +𝐵𝛼

√(𝐵+𝜎Δ𝜉𝑖+1

2 )𝐵𝜎Δ𝜉𝑖+1

2
)

]
 
 
 
 
 
 
 
 

         (8) 

where 𝐵 = 𝜎𝑖
2𝑟𝑖,0; 𝐴 = 𝜇𝑖𝑟𝑖,0; 𝛼 = 𝑊𝑓 + 𝜇𝛥𝜉𝑖+1

− 𝑤𝑝 + 𝛾𝑖. 

Furthermore, the PDF of the RDT regarding to the 

degradation stage prior to the last maintenance is: 

𝑓𝑅𝑖−1,𝑗
(𝑟𝑖−1,𝑗|𝑤𝑝 + 𝜉𝑖 − 𝑋(𝑡𝑖−1,𝑗)) =

1

√2𝜋𝑟𝑖−1,𝑗
2 ⋅Φ(

𝛼

𝜎𝜉𝑖

)(𝐵+𝜎𝜉𝑖

2 )

          ⋅

     

[
 
 
 
 
 √

𝐵𝜎𝜉𝑖

2

2𝜋
𝑒𝑥𝑝 (−

𝐴2𝜎𝜉𝑖

2 +𝛼2𝐵

2𝐵𝜎𝜉𝑖

2 ) +

𝐴𝜎𝜉𝑖

2 +𝐵𝛼

√𝐵+𝜎𝜉𝑖

2
𝑒𝑥𝑝 (−

(𝛼−𝐴)2

2(𝐵+𝜎𝜉𝑖

2 )
)Φ(

𝐴𝜎𝜉𝑖

2 +𝐵𝛼

√(𝐵+𝜎𝜉𝑖

2 )𝐵𝜎𝜉𝑖

2
)

]
 
 
 
 
 

              (9) 

where 𝐵 = 𝜎𝑖−1
2 𝑟𝑖−1,𝑗 ; 𝐴 = 𝜇𝑖−1𝑟𝑖−1,𝑗 ;𝛼 = 𝑤𝑝 + 𝜇𝜉𝑖

− 𝑋(𝑡𝑖−1,𝑗) . 

Similarly, during the degradation period from the 1i −  th 

maintenance to the 𝑖 th maintenance, the PDF of the total RDT 

can be obtained as: 

𝑓𝑅𝑖−1,0
(𝑟𝑖−1,0|𝛾𝑖−1 + 𝛥𝜉𝑖) =

𝛾𝑖−1+𝛥𝜉𝑖

√2𝜋𝜎𝑖−1
2 𝑟𝑖−1,0

3
⋅
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       𝑒𝑥𝑝 [−
(𝛾𝑖−1+𝛥𝜉𝑖−𝜇𝑖−1𝑟𝑖−1,0)

2

2𝜎𝑖−1
2 𝑟𝑖−1,0

] =
1

√2𝜋𝐵𝑟𝑖−1,0
2

⋅
√𝐵

𝛷(
𝛼

𝜎𝛥𝜉𝑖

)(𝐵+𝜎𝛥𝜉𝑖
2 )

⋅

                              

[
 
 
 
 
 
 
 
 
 
√

𝐵𝜎𝛥𝜉𝑖
2

2𝜋
𝑒𝑥𝑝(−

𝐴2𝜎𝛥𝜉𝑖
2 +𝛼2𝐵

2𝐵𝜎𝛥𝜉𝑖
2 ) +

𝐴𝜎𝛥𝜉𝑖
2 +𝐵𝛼

√𝐵+𝜎𝛥𝜉𝑖
2

𝑒𝑥𝑝(−
(𝛼−𝐴)2

2(𝐵+𝜎𝛥𝜉𝑖
2 )

) ⋅

𝛷(
𝐴𝜎𝛥𝜉𝑖

2 +𝐵𝛼

√(𝐵+𝜎𝛥𝜉𝑖
2 )𝐵𝜎𝛥𝜉𝑖

2
)

]
 
 
 
 
 
 
 
 
 

             (10) 

where 𝐵 = 𝜎𝑖−1
2 𝑟𝑖−1,0; 𝐴 = 𝜇𝑖−1𝑟𝑖−1,0; 𝛼 = 𝛾𝑖−1 + 𝜇𝛥𝜉𝑖

. 

According to the Eq. (9), when 𝑖 = 1, the PDF of the RDT 

in the natural degradation stage is: 

   𝑓𝑅0,𝑗
(𝑟0,𝑗|𝑤𝑝 + 𝜉1 − 𝑋(𝑡0,𝑗)) =

1

√2𝜋𝑟0,𝑗
2 ⋅Φ(

𝛼

𝜎𝜉1
)(𝐵+𝜎𝜉1

2 )

           ⋅

   

[
 
 
 
 
 √

𝐵𝜎𝜉1
2

2𝜋
𝑒𝑥𝑝 (−

𝐴2𝜎𝜉1
2 +𝛼2𝐵

2𝐵𝜎𝜉1
2 ) +

𝐴𝜎𝜉1
2 +𝐵𝛼

√𝐵+𝜎𝜉1
2

𝑒𝑥𝑝 (−
(𝛼−𝐴)2

2(𝐵+𝜎𝜉1
2 )

) ⋅

Φ (
𝐴𝜎𝜉1

2 +𝐵𝛼

√(𝐵+𝜎𝜉1
2 )𝐵𝜎𝜉1

2
)

]
 
 
 
 
 

(11) 

where 𝐵 = 𝜎0
2𝑟0,𝑗; 𝐴 = 𝜇0𝑟0,𝑗; 𝛼 = 𝑤𝑝 + 𝜇𝜉1

− 𝑋(𝑡0,𝑗). 

When 𝑗 = 0, 𝑋(𝑡0,0) = 0in Eq. (11), the Eq. (11) represents 

the PDF of the total RDT in the natural degradation stage. 

According to the above inference, the RUL of the OT in the 

natural degradation stage is: 

𝑟0,𝑗 = {𝐸(𝑟0,𝑗) + ∑𝐸(𝑟𝑖−1,0

𝑛

𝑖=2

) + 𝐸(𝑟𝑖,0)} 

{𝑛 > 1, 𝑛 ∈ 𝑍+; 𝑗 ≥ 0, 𝑗 ∈ 𝑍+}    (12) 

where 𝐸(𝑟0,𝑗) = ∫ 𝑟0,𝑗
+∞

−∞
𝑓𝑅0,𝑗

(𝑟0,𝑗)𝑑(𝑟0,𝑗); 

            𝐸(𝑟𝑖−1,0) = ∫ 𝑟𝑖−1,0
+∞

−∞
𝑓𝑅𝑖−1,0

(𝑟𝑖−1,0)𝑑(𝑟𝑖−1,0); 

          𝐸(𝑟𝑖,0) = ∫ 𝑟𝑖,0𝑓𝑅𝑖,0

′ (𝑟𝑖,0)𝑑(𝑟𝑖,0)
+∞

−∞
. 

The RUL of the OT in any stage of degradation between the 

first and last maintenance is: 

 𝑟𝑖−1,𝑗 = {∑ 𝐸(𝑟𝑖−1,𝑗
1
𝑖=𝑘 ) + ∑ 𝐸(𝑟𝑖−1,0) + 𝐸(𝑟𝑖,0)

𝑛
𝑖=𝑘+1 }{𝑘 ≥

            2, 𝑘 ∈ 𝑍+; 𝑛 > 1, 𝑛 ∈ 𝑍+; 𝑗 ≥ 0, 𝑗 ∈ 𝑍+} (13) 

where 𝐸(𝑟𝑖−1,𝑗) = ∫ 𝑟𝑖−1,𝑗
+∞

−∞
𝑓𝑅𝑖−1,𝑗

(𝑟𝑖−1,𝑗)𝑑(𝑟𝑖−1,𝑗); 

     𝐸(𝑟𝑖−1,0) = ∫ 𝑟𝑖−1,0
+∞

−∞
𝑓𝑅𝑖−1,0

(𝑟𝑖−1,0)𝑑(𝑟𝑖−1,0); 

     𝐸(𝑟𝑖,0) = ∫ 𝑟𝑖,0𝑓𝑅𝑖,0

′ (𝑟𝑖,0)𝑑(𝑟𝑖,0)
+∞

−∞
. 

The RUL of the OT in the degradation period since its last 

maintenance is: 

𝑟𝑖,𝑗 = 𝐸(𝑟𝑖,𝑗) = ∫ 𝑟𝑖,𝑗𝑓𝑅𝑖,𝑗

′ (𝑟𝑖,𝑗)𝑑(𝑟𝑖,𝑗)
+∞

−∞
  (14) 

In conclusion, it can be stated that the RUL of the equipment 

at any OT 𝑡𝑖  during its lifespan, after undergoing 𝑖  th 

maintenance, can be expressed as： 

𝑟𝑖 = {

𝑟0,𝑗 , 𝜏0 ≤ 𝑡𝑖 ≤ 𝜏1

𝑟𝑖−1,𝑗 , 𝜏𝑖−1 ≤ 𝑡𝑖 ≤ 𝜏𝑖

𝑟𝑖,𝑗 , 𝜏𝑖 ≤ 𝑡𝑖 ≤ 𝜏𝑖+1

  (15) 

4. Estimation of parameters 

The RUL formula of the equipment has unknown parameters is 

𝜃 = (𝜇𝜉𝑖
, 𝜎𝜉𝑖

2 , 𝜇𝛥𝜉𝑖
, 𝜎𝛥𝜉𝑖

2 , 𝜇𝜉𝑖+1
, 𝜎𝜉𝑖+1

2 , 𝜇𝛥𝜉𝑖+1
, 𝜎𝛥𝜉𝑖+1

2 , 𝜇𝑖 , 𝜎𝑖
2), where 

𝜇𝜉𝑖
, 𝜎𝜉𝑖

2   and 𝜇𝛥𝜉𝑖
, 𝜎𝛥𝜉𝑖

2   belong to the distribution parameters of 

the maintenance threshold error 𝜉𝑖  and the maintenance error 

interval 𝛥𝜉𝑖 , respectively, while 𝜇𝜉𝑖+1
, 𝜎𝜉𝑖+1

2   and 𝜇𝛥𝜉𝑖+1
, 𝜎𝛥𝜉𝑖+1

2  

belong to the distribution parameters of the failure threshold 

error 𝜉𝑖+1 and the failure-maintenance threshold error interval 

𝛥𝜉𝑖+1. The parameter 𝜇𝑖 , 𝜎𝑖
2 belongs to the degradation model 

and all parameters are independent of each other. In light of this 

situation, this paper first utilizes the MLE [1] approach to 

estimate the parameters of the maintenance threshold error, the 

maintenance threshold error interval, the failure threshold error, 

and the failure threshold error interval in the model. 

Subsequently, the MLE approach and Bayesian formula [1,10] 

are applied to estimate the degradation parameters in the 

degradation model. 

4.1. Estimation of parameters for failure and maintenance 

threshold error 

Assuming that the amount of performance degradation of the 

equipment detected in the last inspection before the 𝑖 th 𝑖(𝑖 =

1,2, . . . . 𝑛)  maintenance was 𝑋𝜏𝑖
 ; when 𝑖 = 𝑛 + 1 , the 

equipment failed with the last detected performance degradation 

of 𝑋𝜏𝑖+1
  before the failure. we can analyze upon the previous 

assumption, the maintenance threshold error and the failure 

threshold error of the equipment after the 𝑖 th maintenance may 

be expressed as: 

𝜉𝑖 = 𝑋𝜏𝑖
− 𝑤𝑝   (16) 

𝜉𝑖+1 = 𝑋𝜏𝑖+1
− 𝑊𝑓   (17) 

the logarithm of the likelihood function of the 𝜇𝜉𝑖
, 𝜎𝜉𝑖

2  is: 
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𝑙𝑛 𝐿 (𝜇𝜉𝑖
, 𝜎𝜉𝑖

2 ) = −
𝑛+1

2
𝑙𝑛 2 𝜋 −

𝑛+1

2
𝑙𝑛 𝜎𝜉𝑖

2 −
∑ (𝜉𝑖−𝜇𝜉𝑖

)2𝑛+1
𝑖=1

2𝜎𝜉𝑖

2    (18) 

By finding partial derivatives of Eq. (18) for 𝜇𝜉𝑖
, 𝜎𝜉𝑖

2   and 

letting them to zero, we can acquire: 

{
𝜇𝜉�̂�

=
∑ 𝜉𝑖

𝑛+1
𝑖=1

𝑛+1

𝜎𝜉�̂�

2 =
∑ (𝜉𝑖−𝜇𝜉�̂�)

2𝑛+1
𝑖=1

𝑛+1

   (19) 

Upon doubly consideration, due to the random characteristic 

of equipment degradation and the uncertainty of measurement 

techniques, the maintenance and failure thresholds at different 

MFs are not entirely equal in practicality. Therefore, the 

expressions of 𝜇𝜉𝑖
 , 𝜎𝜉𝑖

2  , and 𝜇𝜉𝑖+1
 , 𝜎𝜉𝑖+1

2  have been respectively 

adjusted as: 

{

𝜇𝜉𝑖
= 𝜉𝑖

𝜎𝜉�̂�

2 =
∑ (𝜉𝑖−

∑ 𝜉𝑖
𝑛+1
𝑖=1
𝑛+1

)2𝑛+1
𝑖=1

𝑛+1

  (20) 

{

𝜇𝜉𝑖+1
= 𝜉𝑖+1

𝜎𝜉𝑖+1̂

2 =
∑ (𝜉𝑖−

∑ 𝜉𝑖
𝑛+1
𝑖=1
𝑛+1

)2𝑛+1
𝑖=1

𝑛+1

  (21) 

Similarly, we can obtain the expressions for 𝜇𝛥𝜉𝑖
 , 𝜎𝛥𝜉𝑖

2  and 

𝜇𝛥𝜉𝑖+1
, 𝜎𝛥𝜉𝑖+1

2  as follows: 

{

𝜇Δ𝜉𝑖
= Δ𝜉𝑖 = 𝜉𝑖 − 𝜉𝑖−1

𝜎Δ𝜉𝑖
̂ 2 =

∑ (𝜇Δ𝜉𝑖
−

∑ 𝜇Δ𝜉𝑖
𝑛+1
𝑖=2

𝑛+1
)2𝑛+1

𝑖=2

𝑛+1

  (22) 

{

𝜇Δ𝜉𝑖+1
= Δ𝜉𝑖+1 = 𝜉𝑖+1 − 𝜉𝑖

𝜎Δ𝜉𝑖+1̂

2 =
∑ (𝜇Δ𝜉𝑖

−
∑ 𝜇Δ𝜉𝑖
𝑛+1
𝑖=2

𝑛+1
)2𝑛+1

𝑖=2

𝑛+1

  (23) 

4.2. Estimation of parameters for degradation parameters 

Assuming that the equipment’s amount of performance 

degradation detected by the time 𝑡𝑖,𝑗  is 𝑥𝑖,𝑗 , where𝑖(0 ≤ 𝑖 ≤

1 ≤ 2 ≤⋅⋅⋅≤ 𝑛, 𝑛 ∈ 𝑍+) is the MFs and 𝑗(0 ≤ 𝑗 ≤ 1 ≤ 2 ≤⋅⋅⋅≤

ℎ, ℎ ∈ 𝑍+)  is the time of degradation sample detections. 

Therefore, during the degradation stage from the i  th 

maintenance movement to the next maintenance movement, the 

logarithmic likelihood function based on the sample data is: 

𝑙(𝜇𝑖 , 𝜎𝑖
2|Δ𝑥𝑖,𝑗) = −

ℎ

2
𝑙𝑛 2𝜋 + ∑ 𝑙𝑛 Δ 𝑡𝑗 + ℎ 𝑙𝑛 𝜎𝑖

2 + ∑
(Δ𝑥𝑖,𝑗−𝜇𝑖Δ𝑡𝑖,𝑗)

2

𝜎𝑖
2Δ𝑡𝑖,𝑗

ℎ
𝑗=1

ℎ
𝑗=1  (24) 

By finding partial derivatives of Eq. (24) for 𝜇𝑖, 𝜎𝑖
2  and 

letting them to zero, we can acquire: 

{

�̂�𝑖 =
1

ℎ
∑

Δ𝑥𝑖,𝑗

Δ𝑡𝑖,𝑗

ℎ
𝑗=1

�̂�𝑖
2 = [

1

ℎ
∑

(Δ𝑥𝑖,𝑗−�̂�𝑖Δ𝑡𝑖,𝑗)
2

Δ𝑡𝑖,𝑗

ℎ
𝑗=1 ]

  (25) 

In Eq. (25), under the assumption of other known conditions, 

the parameter 𝜎𝑖
2 that characterizes the degradation path of the 

equipment is decided by the parameter 𝜇𝑖 that characterizes the 

degradation rate of the equipment. This suggests that once the 

equipment's degradation rate is determined, its degradation path 

is correspondingly determined and fixed. However, during the 

degradation course of the equipment, due to the randomness of 

the degradation course, the degradation path exhibits 

uncertainty. Even if the calculated degradation rate of 

equipment is the same, its degradation path is not unique. 

Therefore, in the parameter estimation of degradation 

parameters, it is necessary to consider the issue of parameter 

updating. 

Assuming that the degradation parameters of the equipment 

after maintenance and update are 𝜇𝑖 , �̃�𝑖
2(𝑖 ≥ 1) , which are 

updated from the degradation parameters 
2

1 1( , )i i − − =
 

before maintenance, we can acquire from the Bayesian formula: 

𝐿(𝜇𝑖 , �̃�𝑖
2|Δ𝑥𝑖,𝑗 , Θ) ∝ 𝐿(Δ𝑥𝑖,𝑗|𝜇𝑖 , 𝜎𝑖

2) ⋅ 𝐿(𝜇𝑖 , 𝜎𝑖
2|Θ) ∝

    𝑒𝑥𝑝 [−∑
(Δ𝑥𝑖,𝑗−𝜇𝑖Δ𝑡𝑗)

2

2𝜎𝑖
2Δ𝑡𝑗

ℎ
𝑗=1 ] ⋅ 𝑒𝑥𝑝 [−

(𝜇𝑖−𝜇𝑖−1)2

2𝜎𝑖−1
2 ] ∝

𝑒𝑥𝑝 [−∑ (𝜇𝑖
2 (

Δ𝑡𝑗

2𝜎𝑖
2 +

1

2𝜎𝑖−1
2 ) − (

Δ𝑥𝑖,𝑗

𝜎𝑖
2 +

𝜇𝑖−1

𝜎𝑖−1
2 ) 𝜇𝑖)

ℎ
𝑗=1 ] ∝

                             𝑒𝑥𝑝

[
 
 
 

−

(𝜇𝑖−
∑ (Δ𝑥𝑖,𝑗𝜎𝑖−1

2 +𝜇𝑖−1𝜎𝑖
2)ℎ

𝑗=1

∑ 𝜎𝑖−1
2 Δ𝑡𝑗+𝜎𝑖

2ℎ
𝑗=1

)2

2⋅∑
𝜎𝑖

2𝜎𝑖−1
2

𝜎𝑖−1
2 Δ𝑡𝑗+𝜎𝑖

2
ℎ
𝑗=1

]
 
 
 

                 (26) 

According to Eq. (26), the parameter expression of the 

updated degradation path is given by: 

�̃�𝑖
2 = ∑

𝜎𝑖
2𝜎𝑖−1

2

𝜎𝑖−1
2 Δ𝑡𝑗+𝜎𝑖

2
ℎ
𝑗=1    (27) 

The parameters 𝜎𝑖
2 and 𝜎𝑖−1

2  can be calculated using Eq. (25). 

Similarly, when 𝑖 = 0, Eq. (27) became: 

�̃�0
2 = ∑

𝜎0
2𝜎0

2

𝜎0
2Δ𝑡𝑗+𝜎0

2
ℎ
𝑗=1    (28) 

5. Case analysis 

5.1. Simulation validation 

Utilizing the independent increment property of the Wiener 

process [10,24], this article first randomly generates degenerate 

increment data using Matlab software. Secondly, given the 

parameter values: 𝑊𝑓 = 0.67 , 𝑤𝑝 = 0.52 , 𝛥𝑡 = 1 , 𝑖 =

3 ,𝑋1,0 = 0.12004 , 𝑋2,0 = 0.21523 , 𝑋3,0 = 0.27916 , a set of 

degenerate data is simulated to prove the availability of the 

approach mentioned in this article, as shown in Figure 2. 
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Fig.2. Simulated degradation data under maintenance 

influence. 

To prove the availability of our approach, we conduct 

comparative analysis with approaches that do not consider 

degradation path updating, those which consider degradation 

path updating but not dynamic maintenance thresholds, those 

which consider both degradation path updating and dynamic 

maintenance thresholds but ignore dynamic failure thresholds. 

For ease of comparison, we label our approach as A3, while the 

other approaches are labeled as A0, A1, and A2. The estimation 

outcomes of the unknown parameters for each approaches are 

presented in Table 1. 

Table 1. Parameter estimation outcomes. 

parameters 

MFs (𝑖) 

𝑖 = 0 𝑖 = 1 𝑖 = 2 
𝑖 = 3 

𝑖 𝑖 + 1 

𝜇𝑖 0.011797 0.014231 0.018500 0.024900 - 

𝜎𝑖
2 5.6979E-06 1.1479E-05 1.6860E-05 1.5575E-05 - 

𝜇𝜉𝑖
 - 0.02266 0.02700 0.02908 0.03014 

𝜎𝜉𝑖

2  - 0.8027E-05 0.8027E-05 0.8027E-05 0.8027E-05 

𝜇𝛥𝜉𝑖
 - - 0.00434 0.00208 0.00106 

𝜎𝛥𝜉𝑖

2  - - 0.1879E-05 0.1879E-05 0.1879E-05 

It can be tented from Figure 2 that the degradation trajectory 

of the equipment after three repairs is divided into four stages 

of degradation. In order to highlight the verification effect and 

increase rationality, this article selects four OTs arbitrarily in 

each degradation stage for the prediction of RUL. According to 

the derivation of the RUL prediction formula for the four 

approaches, the RDT corresponding to each OT in each 

degradation stage should be calculated first. The concrete 

calculation outcomes can be calculated in Table 2. 

In Table 2, considering the updated degradation path and 

dynamic maintenance threshold, A2 and A3 approaches resulted 

in a predicted RDT closer to the actual remaining degradation 

time (ARDT) compared to the A0 and A1 approaches. This 

indicates that an approach considers both the updated 

degradation path and dynamic maintenance threshold can 

effectively upgrade the precision of predicting the RDT, thus 

enhancing the precision of predicting the RUL. In particular, in 

the degradation stage after three maintenance cycles, the A3 

approach predicted the RDT closer to the practical value than 

the A2 approach. This is because the A3 approach doubly 

considers the dynamic failure threshold based on the A2 

approach, demonstrating the importance of considering the 

dynamic failure threshold in improving the precision of 

prediction. To doubly illustrate the differences among the four 

approaches, the RUL and relative errors (REs) outcomes 

calculated by four approaches and Actual remaining useful life 

(ARUL) are shown in Table 3. 

Table 2. RDT calculated using four approaches corresponding 

degradation stage at different MFs 

MFs (𝑖) OT A0 A1 A2 A3 ARDT 

𝑖 = 0 

0 41.36 44.03 45.91 45.91 46 

1 39.79 42.51 44.36 44.36 45 

3 37.59 40.35 42.26 42.26 43 

11 30.69 33.37 35.26 35.26 35 

𝑖 = 1 

46 25.64 28.02 29.89 29.89 30 

51 20.60 23.04 24.92 24.92 25 

55 16.22 18.62 20.52 20.52 21 

67 4.94 7.04 8.93 8.93 9 

𝑖 = 2 

76 15.18 16.40 17.98 17.98 18 

77 14.28 15.61 17.17 17.17 17 

88 4.44 5.59 6.17 6.17 6 

89 2.14 3.17 4.74 4.74 5 

𝑖 = 3 

94 15.04 15.66 15.66 16.92 17 

95 14.39 14.99 14.99 15.68 16 

99 10.20 10.81 10.81 11.67 12 

100 8.58 9.20 9.20 10.46 11 

Table 3. RUL and REs calculated by four Approaches. 

OT A0 A1 A2 A3 ARUL 

0 
97.22 

(-12.41%) 

104.11 

(-6.21%) 

109.44 

(1.41%) 

110.70 

(-0.27%) 
111 

1 
95.65 

(-13.05%) 

102.59 

(-6.74%) 

107.89 

(-1.92%) 

109.15 

(-0.77%) 
110 

3 
93.45 

(-13.47%) 

100.43 

(-7.01%) 

105.79 

(-2.05%) 

107.05 

(-0.88%) 
108 

11 
86.55 

(-13.45%) 

93.45 

(-6.55%) 

98.79 

(-1.21%) 

100.05 

(0.05%) 
100 

46 
55.86 

(-14.06%) 

60.08 

(-7.57%) 

63.53 

(-2.26%) 

64.79 

(-0.32%) 
65 

51 
50.82 

(-15.30%) 

55.10 

(-8.17%) 

58.56 

(-2.40%) 

59.82 

(0.30%) 
60 
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OT A0 A1 A2 A3 ARUL 

55 
46.44 

(-17.07%) 

50.68 

(-9.50%) 

54.16 

(-3.29%) 

55.42 

(-1.04%) 
56 

67 
35.16 

(-20.09%) 

39.10 

(-11.14%) 

42.57 

(-3.25%) 

43.83 

(-0.39%) 
44 

76 
30.22 

(-13.66%) 

32.06 

(-8.40%) 

33.64 

(-3.89%) 

34.90 

(-0.29%) 
35 

77 
29.32 

(-13.76%) 

31.27 

(-8.03%) 

32.83 

(-3.44%) 

34.09 

(0.26%) 
34 

88 
19.48 

(-15.30%) 

21.25 

(-7.61%) 

21.83 

(-5.09%) 

23.09 

(0.39%) 
23 

89 
17.18 

(-21.91%) 

18.83 

(-14.41%) 

20.40 

(-7.27%) 

21.66 

(-1.55%) 
22 

94 
15.04 

(-11.53%) 

15.66 

(-7.88%) 

15.66 

(-7.88%) 

16.92 

(-0.47%) 
17 

95 
14.39 

(-10.06%) 

14.99 

(-6.31%) 

14.99 

(-6.31%) 

15.68 

(-2.00%) 
16 

99 
10.20 

(-15.00%) 

10.81 

(-9.92%) 

10.81 

(-9.92%) 

11.67 

(-2.75%) 
12 

In table 3, it is evident that the prediction deviation for the 

A0 and A1 approaches surpasses that of the other two 

approaches. This indicates that ignoring dynamic maintenance 

thresholds can lead to a decrease in the precision of RUL, while 

taking them into account can effectively enhance the precision 

of the forecast. Furthermore, on the basis of considering 

dynamic maintenance thresholds, the prediction deviation of the 

A3 approach is lower than that of the A2 approach. That is 

because the A3 approach, in addition to considering dynamic 

maintenance thresholds like the A2 approach, takes into account 

dynamic failure thresholds - illustrating that, in addition to 

considering dynamic maintenance thresholds to improve the 

precision of prediction outcomes, dynamic failure thresholds 

are also a critical factor that cannot be ignored. 

To visually illustrate the differences between the four 

approaches and doubly substantiate the above conclusions, the 

PDF of RDT predicted by the four approaches, using different 

OTs (0, 46, 76, and 94), was created following different MFs, as 

depicted in Figure 3. 

In Figure 3, it is evident that in each degradation phase after 

MFs is 0, 1, and 2, the predicted values of A2 and A3 approaches 

are notably closer to the actual values in comparison to A0 and 

A1 approaches. This illustrates that the approach of considering 

dynamic maintenance thresholds on the basis of degradation 

path is necessary and effective in enhancing the precision of 

prediction outcomes. For the degradation phase after MFs is 3, 

the introduction of dynamic failure thresholds has led to  

a significant decrease in the difference between predicted values 

and actual values of the A3 approach, which once again proves 

the importance of considering dynamic failure thresholds in 

improving prediction precision. Through the aforementioned 

validation, our approach is proven to be valid in upgrading the 

prediction precision of RUL. To doubly highlight the superiority 

of our mentioned approach, in addition to considering 

degradation path updates, a comparison and analysis of A1, A2, 

and A3 approaches will be conducted through examples. 

 

(a) 0i =  

 

(b) 1i =  

 

(c) 2i =  
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(d) 3i =  

Fig.3. PDF of RDT predicted by four approaches during the 

corresponding degradation stage under different MFs. 

5.2. Example analysis 

Using the drift coefficient of a certain model gyroscope 1 after 

3 MFs as performance degradation data from literature [1], the 

availability of the approach mentioned in this article is validated. 

The gyroscope is powered on every 2.5 hours, which means the 

degradation data is recorded by each 2.5 hours. The 

predetermined maintenance threshold and failure threshold for 

the gyroscope are 0.3°/h and 0.37°/h, respectively, with  

a lifespan of 277.5h. The estimation outcomes of the unknown 

parameters calculated upon the degradation data are shown in 

Table 4. 

Table 4. Estimation outcomes of the unknown parameters. 

parameters 

MFs（𝑖） 

𝑖 = 0 𝑖 = 1 𝑖 = 2 
𝑖 = 3 

𝑖 𝑖 + 1 

𝜇𝑖 2.42E-03 3.11E-03 4.16E-03 8.53E-03 - 

𝜎𝑖
2 

1.9151E-

07 

4.8204E-

07 

6.0420E-

10 

3.2749E-

06 
- 

𝜇𝜉𝑖
 - 0.0020 0.0020 0.0020 0.0150 

𝜎𝜉𝑖

2  - 3169E-05 3169E-05 3169E-05 
3169E-

05 

𝜇𝛥𝜉𝑖
 - - 0.0000 0.0000 0.0130 

𝜎𝛥𝜉𝑖

2  - - 3756E-05 3756E-05 
3756E-

05 

According to Table 4 and Eq. (15), RUL prediction values 

can be acquired for any OT. Similar to the verification process 

in the simulation, four OTs were selected randomly for RUL 

prediction in each degradation stage. The calculated RDT, RUL 

and REs using the three approaches are shown in Table 5 and 

Table 6, respectively. 

Table 5. RDT calculated using three approaches corresponding 

degradation stage at different MFs. 

MFs (𝑖) OT/h A1 A2 A3 ARDT 

𝑖 = 0 

0 123.90 124.80 124.80 125.00 

2.5 119.8 121.5 121.5 122.50 

95 25.98 27.44 27.44 30.00 

122.5 1.60 2.43 2.43 2.50 

𝑖 = 1 

125 73.88 74.52 74.52 75.00 

177.5 19.86 21.91 21.91 22.50 

180 17.61 18.73 18.73 20.00 

190 8.93 9.57 9.57 10.00 

𝑖 = 2 

200 46.39 46.80 46.80 47.50 

212.5 34.13 34.47 34.47 35.00 

230 15.38 16.43 16.43 17.50 

245 0.96 1.45 1.45 2.50 

𝑖 = 3 

247.5 27.83 28.02 29.59 30.00 

250 24.55 24.55 26.65 27.50 

257.5 18.10 18.10 19.79 20.00 

267.5 7.90 7.90 9.84 10.00 

Table.6. RUL and REs calculated by three Approaches. 

OT/h A1 A2 A3 ARUL/h 

0 272.00(1.98%) 274.14(1.21%) 275.71(0.65%) 277.50 

2.5 267.90(2.58%) 270.84(1.51%) 272.41(0.94%) 275.00 

95 174.08(4.61%) 176.78(3.13%) 178.35(2.27%) 182.50 

122.5 149.70(3.42%) 151.77(2.08%) 153.34(1.07%) 155.00 

125 148.10(2.895%) 149.34(2.07%) 150.91(1.04%) 152.50 

177.5 94.08(-5.92%) 96.73(-3.27%) 98.30(-1.70%) 100.00 

180 91.83(-5.82%) 93.55(-4.05%) 95.12(-2.44%) 97.50 

190 83.15(4.97%) 84.39(-3.55%) 85.96(-1.76%) 87.50 

200 74.22(-4.23%) 74.82(-3.46%) 76.39(-1.43%) 77.50 

212.5 61.96(-4.68%) 62.49(-3.86%) 64.06(-1.45%) 65.00 

230 43.21(-9.03%) 44.45(-6.42%) 46.02(-3.12%) 47.50 

245 28.79(-11.42%) 29.47(-9.32%) 31.04(-4.49%) 32.50 

247.5 27.83(-7.23%) 28.02(-6.60%) 29.59(-1.37%) 30.00 

250 24.55(-10.73%) 24.55(10.73%) 26.65(-3.09%) 27.50 

257.5 18.10(-9.50%) 18.10(-9.50%) 19.79(-1.05%) 20.00 

267.5 7.90(-21.00%) 7.90(-21.00%) 9.84(-1.60%) 10.00 

According to Table 5 and Table 6, it is evident that the 

prediction values of approach A3 are much closer to the 

practical values, with a smaller prediction deviation, compared 

to approaches A1 and A2. In practical engineering, using 

approaches A1 and A2 may result in excessive replacement of 

equipment, thereby affecting equipment efficiency. Therefore, 

in addition to considering the updating of degradation paths and 

dynamic maintenance thresholds, dynamic failure thresholds 

should also be valued when predicting RUL. To highlight the 
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differences in the prediction of the three approaches, the total 

RDT for each degradation stage after MFs is 0, 1, 2, and 3 is 

plotted as a PDF, corresponding to run times of 0h, 125h, 200h, 

and 247.5h, respectively. This is shown in Figure 4.

  

(a) 0i =  

  

(b) 1i =  

  

(c) 2i =  

  

(d) 3i =  

Fig.4. PDF of RDT predicted by three approaches corresponding degradation stage under different MFs.

For the various stages of degradation prior to the third repair in Figure 4, the difference between the predicted RDT of A2 and 
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A3 approaches and the actual values is significantly smaller 

than that of the A1 approach, demonstrating the efficacy of 

considering both updated degradation paths and dynamically 

updated failure thresholds in prediction approaches. However, 

for the degradation stage after the third repair, while A2 

approach shows an improvement in prediction precision 

compared to the A1 approach, the degree of improvement is 

limited due to the neglect of dynamic failure thresholds. In 

contrast, the A3 approach, by doubly considering dynamic 

failure thresholds, produces predicted values closer to the 

practical values, which doubly confirms the high precision and 

availability of prediction approaches that consider both updated 

degradation paths and dynamic thresholds. 

To doubly demonstrate and justify the rationality and high 

precision of the A3 approach, two common indicators are used 

to analyze the precision of the predicted RUL: Absolute Error 

(AE) and Relative Accuracy (RA) [25]. The judgment basis of 

AE is that the smaller the AE value calculated by the approach, 

the higher the precision of the approach. As shown in Figure 

5(a), the AE value counted by the A3 approach is smaller than 

the other two approaches, indicating that the A3 approach can 

effectively upgrade the precision of RUL prediction. RA is 

judged exactly opposite to AE and is shown in Figure 5(b), 

where it can again be concluded that A3 approach can 

effectively upgrade the precision of RUL prediction. 
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Fig.5. AE and RA of RUL predicted by three approaches. 

After conducting the aforementioned comparative analysis, 

it can be inferred that the RUL prediction approach 

incorporating consideration of degradation path updates, 

dynamic maintenance thresholds, and dynamic failure 

thresholds can be valid to enhance the precision of RUL 

prediction while remaining practical. 

6. Conclusion 

In this article, a RUL prediction approach that considers 

dynamic thresholds is proposed to address the problem of 

traditional maintenance-impact-based prediction approaches 

treating maintenance and failure thresholds as fixed values, 

which is inconsistent with actual practice.  

1) By combining multi-stage degradation modeling 

theory, thinking about the impact of maintenance on 

degradation amount and rate, doubly reflecting on the 

update of maintenance impact on degradation paths 

and introducing maintenance threshold errors to 

reflect the dynamic nature of maintenance thresholds, 

a maintenance impact-degradation model upon the 

Wiener process is set up.  

2) According to the degradation model, the dynamic 

nature of failure thresholds is reflected by introducing 

failure threshold errors, and the RUL prediction 

model is acquired under the framework of the FHT. 

The unknown parameters in the model are estimated 

by combining the MLE approach and the Bayesian 

formula. 

3) The mentioned approach is verified and analyzed by 
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simulation data and gyroscope degradation data. The 

outcomes show that under maintenance impact, the 

approach considering dynamic maintenance 

thresholds and failure thresholds can be valid to 

upgrade the precision of RUL prediction.
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